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l. Introduction

Caption: Illustrative model of an open

) [R """""""""""""""""" cavity. Section z < z, is a cutoff waveguide
...... 2 1
Y . R 1 _______ 2 AW (for electron beam entrance). The section
Z; 2 Z5 "z z z
...... f_*2 TEmm mode “¥ =4 4 outgoing b d 1 h I
— going between z, and z; comprises the main body

ST the cavity. The section between z; and z,
i1s slightly tapered to provide partial
reflection back to the cavity and partial
transmission into the output waveguide (z >

Z,).
* Open cavities are employed 1n gyrotrons for the generation and
extraction of high-power millimeter/terahertz radiation.
* The resonant characteristics depend on the structure. This 1s a
low-Q resonant circuit due to the open-end structure.

* The materials are self-contained and self-explanatory.
* A complementary spectral-domain model can be found in the
Appendix.



Il. Formulation
............................ Consider a typical open cavity

~58
------ > R Re formed of multiple sections of
R AT i s B T g T W—
______ mat MOdeE ' : '
— ' gegowg. uniform and linearly tapered

S~ TE wave
L ] L | - L] structures. Find the resonant

frequency @, and the QO-factor.

3 assumptions:
* The waveguide radius changes slowly, and there is no mode

conversion.
* A resonant mode 1s initially present in the cavity. All fields vary

with time as exp(— iwt).
 The end sections are uniform to ensure the correctness of the

calculation.

w = w, + lw; (Where w; <0.)



Time-Domain Analysis

The time dependence of a field component (say B,) is
Bz~e_iwt — pWitp—lwyt

Field energy ~|B,|?~e?®it, (w;<0)

= 2|w;| - (field energy)

d
Power loss ~ ‘£ (field energy)

Quality factor of the cavity:
_ wy(field energy)  w,

powerloss  2|w;]



Characteristics of TE

mode

For a circular waveguide with slowly varying radius r (z), the wave
equation of TE mode 1s expressed in a cylindrical coordinate system as,

B, = f(@)mlkmn(2)7] €

imO—iwt

Applying the boundary condition on the side wall,

ar

X
_lerzrw(z) =0 = kpun(z) = ——

Tw(z)’

where x,,,,, is the n—th root of J,,(x) = 0

Substituting to the wave equation, we obtain

dZ
[@ + k2 (Z)] f(z) = 0, where A«

f

2
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below cutoff



Field Profile

Ce"z2 + De™ ™22, if w, < Wemnp Tw

f(z) =

The complex function of f(z) takes the general form,
f(2) = 1f(2)|e!*®

The dependences of f(z) and ®(z) on z indicate the nature of the wave.

* For a pure traveling wave (4 =0 or B =0), |f(z)| 1s independent of z,
but ®(z) 1s a linear function of z.

* For a pure standing wave (4 =X B), |[f(z)| is a sinusoidal function of z.

* For decaying waves at both ends, ®(z) 1s independent of z.

Use the boundary conditions to determine |[f(z)| and ®(z).



Boundary Conditions

Out-going wave boundary conditions: Initially there 1s a field
profile satisfying all the boundary conditions and then decaying
with time.

Atbothends,A=D=0atz=z,and C=B=0 at z..

_ikz(zl)f(zl)» if Wy > wcmn(zl)

Kz(Zl)f(Zl)r if Wy < wcmn(zl)

f'(z1) ={

ikz(ZS)f(ZS)» if Wy > wcmn(ZS)

_KZ(ZS)f(ZS)r if Wy < wcmn(zs)

f'(zs) = {



Numerical Procedure

® With a proper guess of the value of w, and O (v = o, tiw,).
® / is given atz =z, and /" 1s set accordingly.
® [ntegrate from z; to z; using Runge Kutta method

® Check the boundary condition at z; and using Muller’s method
to guess the next root of w, and Q.

® [terative integration, each time with an improved guess for w,
will eventually converge to a correct solution for w, and f(z)
will satisfy all the boundary conditions.

10



Complex Boundary Condition (cbc sub-rountine)

The boundary condition at z = z, 1s given. However, the boundary
condition at z = z; needs to be checked.

f’(ZS) — {ikz(zs)f(ZS): i.f Wy > wcmn(ZS)
_KZ(ZS)f(ZS): if Wy < (‘)cmn(ZS)
or D(w) = {f’(z;,) ~ ik, (25)f (25),  if Or > Womn(25)
f'(zs) + Kk,(25)f (z5), if wr < Wemn(Zs)

Standard root-finding algorithms such as Muller’s method can be
readily used.

There are a series of discrete solutions for @ corresponding to
different axial modes (assuming that the transverse mode number

m and n are given).
- L 11 \
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Comments

® [t is clear that the solution for @ should be independent of the
positions of z; and z; as long as they are in the uniform end
sections.

® Validity of the evanescent wave boundary condition requires
that the end waveguide radius (R, or R,) be smaller than the
cavity radius (R).

® [t should also be noted that the assumption of slowly varying
cross-section 1s violated at z = z, (Fig.1). This 1s justifiable only
if the left end waveguide (z < z,) 1s cutoff to the cavity mode. In
this case, total reflection at the left end occurs as a more exact
model would predict.

i )



lll. Numerical Algorithm
How to integrate a differential equation?

dz?

The Runge-Kutta method:

[— + kz(z)] f(2) = 0, where A«

.

k7(z) =

k7 (z) =

2 X2
mn
above cutoff

¢z ri(2)
xmn 2

32

below cutoff

C2

The second order equation shown above can be decomposed into
the form of coupled real differential equations of the first order.

f=rtifi )
f,:f;"+if;:,
ky = kg + ik

U

= Re(k7) +ilm(kz)|

(d

L

@f‘

&

ﬁ

\dz

_fr’

:fr’

]cil

= —Re(k?)fr + Im(k2)f;

—Im(kZ)f; — Re(k2)f;
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lll. Numerical Algorithm
Initial Boundary conditions at z,

The boundary conditions at z = z; can be written,

fr(z1) = arbitrary real constant
fi(z1) = arbitrary real constant

i = {kzr (20)fi(20) + ki (@2)fr (1), if 0r > Wemn (21)
Kzr(Z1)fr(21) — K5i(21) fi(21),  if 0 < Wemn(21)
' —kyr fr(Z1) + kyifi(21), i W > 0cemn(21)
fi (z1) = { .
Kzifr(Z1) + Kor fi(21), it 0p < Wemn(21)

fREITYYR
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lll. Numerical Algorithm
Final Boundary Conditions at z;

® A guessed value for w can now be integrated from z, to z.

® The resulting functions f (z), f(z5), f,'(zs) and f;'(z5) give f(z5)
and 1 '(z).

® The procedure 1s to be repeated with an improved guess of
until the required accuracy 1s achieved.

| It ‘uw-:”' <\ ‘
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IV. A Fortran Exercise

The program (named CAVITY.f) consists of a main program and the following
subprograms.
1. General purpose subprograms.
MULLER: finding the complex roots of an arbitrary complex function (see
Appendix B).
RKINT: performing integration of simultaneous differential equations of the first
order by the Runge-Kutta method (see Appendix C).
SSCALE and SPLOT (or BSCALE and BPLOT): plotting data conveniently in
characters (see Appendix D).

2. Subprograms written for CAVITY (It 1s recommended to go over the contents closely).

CBC: evaluating the function D() in Eq. (19) by integrating Egs. (24)-(27) with
initial values given by Egs. (28)-(31).

DIFEQ: evaluating the derivatives in Egs. (24)-(27).

RADIUS: specifying the cavity wall radius as a function of z.

RHO: specifying the wall resistivity as a function of z.

CLOSS: evaluating the wall loss factor derived in Appendix E (The loss factor has
been incorporated into the formalism in Appendix F.)

-
{ i i
A



Procedures for Running Program Cavity.f

To begin with, the cavity dimensions RADIUS, mode of interest,
and numerical instructions, etc. are specified in the main program.

A guessed value of w 1s then input into MULLER which calls
CBC to evaluate D(w). Subprogram CBC calls RKINT to perform
the integration from z, to z;. Subsequently, RKINT calls DIFEQ to
evaluate the derivatives at every z-step of the integration.

Finally, MULLER returns the solution for @ to the main program
which prints all the information of interest and calls SSCALE and
SPOLT (or BSCALE and BPLOT) to plot |f(z)| and ®(z).

Common blocks are extensively employed for information sharing
(e.g., the cavity dimensions specified in the main program and the
field profile calculated in subprogram CBC) between the main
program and subprograms.

o
e | \ <=
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Cavity Dimensions and Calculated Results

Cavity dimensions used for numerical example
R R R, L Ly Ly, 8

0.9cm 0.5cm 1.1 cm 11.7cm 3 cm 15 cm 10°

______ & LRZ 1.841 30
eyl B o fei1 = =595, = 97668 GHz
st 22 TEpm mode 73 %4 8 outgoing . T
......... T Emﬂwuue _ f111 = 9.96 GHz
L L ! |- Lo+
7
1.0 + s (b)
0.8 » - 5771:
- 4?-[ L.
0.6 : .& aml
50.4 - 27T -
R L
0.2 | 0
0.0 ] | ] | ] | i | | I I | —TT L | I 1 l | | | I | ]
4] 5 10 16 20 25 30 4] 5 10 15 20 25 30
z (em) z (em)

TE,,; mode field profile |[f] and phase angle ®@ as functions of z for
the cavity shown above. o




Wall Resistivity and Loss Factor

Ohmic wall losses have been included in CAVITY through
subprograms RHO and CLOSS.

Formulation of wall loss can be found in Appendix E.

As a first exercise, we can ignore this effect (hence RHO
and CLOSYS) by setting the wall resistivity to zero in the
main program.

The TE_, mode dispersion relation for a vacuum filled

waveguide,
) m? w?
He <1+ _ - )]=o
Tw Xmn — M” Wmn

w? — kZc? — wZ,,, [1 —(141)
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Check the Validity of the Results
(Convergence Test)

(1) When calling MULLER to solve for the root of a function (e.g., CF in
Appendix B), always monitor the number of times (e.g., ICONT in
Appendix B) that the function has been evaluated. For a well-behaved
function, the number should be small (less than 10 per root). When the
number becomes too large or in the case MULLER is unable to find a
root, it 1s a warning signal of some numerical difficulty due to, for
example, erratic behavior of the function (discontinuities and sharp
spikes, etc.) or the presence of many closely spaced roots. The result
may be in question, or the physics may be unexpected. The warning
signal can not be 1gnored.

(11) After MULLER returns a root, always ensure that the resulting function
value (e.g., VALUEI and VALUE?2 in Appendix B) is vanishingly small
relative to the largest terms of the function. For example, if the function
is composed of terms of the order of 10'°, a function value of 10> may be
considered vanishingly small (beware of the number of significant digits
the computer 1s capable of handling).




Check the Validity of the Results Il

(i11) A valid root 1s not necessarily the desired root. For example,
we provide a guessed value for the / = 2 root and call
MULLER to search around it for the correct = 2 root.
MULLER will return a different root (e.g., [ =1 or 3) if the
guessed value happens to be a better guess for that root. A
reliable way to verify the / number of the root returned by
MULLER is to count the number of peaks in | /| versus z.

(iv) Even with all these checks, there 1s still no guarantee that the
results are free from numerical errors. We must also check
whether the step size in the z-integration is sufficiently fine to
ensure convergence of results.

-
A »- 1 { L
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Check the Validity of the Results lli

Figures below show a typical convergence test. The resonant frequency and quality factor Q
are plotted as functions of the total number of steps in the z-integration (named IZSTEP in
program CAVITY). Note that the positions of the junction points (z,, z;, and z, in Fig. 1) and
hence the cavity dimensions, as resolved on the uniformly spaced axial grid points for the z-
integration, are subject to an uncertainty in the magnitude of the step size. This is the
primary reason for the fluctuations of and Q with respect to IZSTEP in the approach to
convergence. The slow convergence shown in Fig. 4 is predominantly due to the uncertainty
of resolving junction point z, (where there is a discontinuity in wall radius) on the discrete
grid points. Generally speaking, the minimum IZSTEP required for good convergence
depends on the circuit geometry and the ratio of the total circuit length to the guide
wavelength. Too large an [IZSTEP can also bring in accumulation of round-off errors.

9.841 ' 470
9.840 (G,) ' 460 (b)
.-\ . . K . -.. N
N 9'839 B -."-‘-:a'--'..l.'--t‘..\l'.|t" |' \‘ 450 ™"
m ts ‘.‘."-.'-:,\‘:u_““.\‘.‘-.\,‘.‘ :::: \‘-.\ RN N A NANN AN RNt Raninnd o> .
B[ BRI
Ny 9.838 I - 40 - ,‘,’ ',*f,‘,,;,, A A IR A OPHOHON
S~ : _ ... . :
9.837 . 430 |1,
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Does the Numerical Results Make Sense?

Even computed correctly, numerical results can not be trusted
unless they make sense physically. We may start by asking some
universal questions: Is the energy conserved (see the slightly
positive slope of 1n Fig. 3a)? Do the results reduce to well known
limits [see Exercises (1) below]? Do they exhibit reasonable
parametric dependence [see Exercises (2)-(4)]? Do they conform to
known scaling laws [see Exercise (5)]? Obtaining answers to these
questions 1s a sure way to become familiar with the problem. We
are now ready to go deeper into the problem [see Exercises (6)-(11)]
and, for the best reward of all, let our imagination take us to the
unexplored territories of research.

Always check carefully!

23



V. Discussion

® Computer programs based on the time domain formalism (such as program

CAVITY) are extremely effective in that they directly evaluate the resonant
frequency, Q, and field profile. They are essential tools for gyrotron designs.
Many runs can be rapidly made to achieve the desired resonant frequency and
Q, to optimize the field profile and maximize mode separation, etc. However,
because of its 1nability to scan the frequency, the time domain formalism does
not present a complete physical picture of the open cavity. The low Q nature
of the open cavity brings about some issues that can only be clarified with a
spectral domain analysis [see Exercises (8)-(11) and Appendix F].

Resonances of the type taking place in an open cavity are common in
microwave circuits which often contain slightly mismatched junctions
between various circuit elements. Single path reflection from one mismatched
junction results in a standing wave pattern (measured by VSWR). Multiple
reflections between two mismatched junctions result in resonances, much like
those of the open cavity. Thus, a circuit with multiple mismatched junctions
behaves like coupled open cavities. The resulting circuit resonances are seen
on an oscilloscope as multiple spikes superimposed on a swept frequency
signal.

i o I s



Exercise 1

1. For the open cavity of Fig. 1 with dimensions given in Table I,
the resonant frequency of the TE,;; mode 1s 9.839 GHz (see Fig.
4). For an enclosed cylindrical cavity with the same radius (0.9
cm) and length (11.7 cm) as those of the main body of the open
cavity, the resonant frequency of the TE,;; mode 1s 9.851 GHz.
Explain the difference qualitatively.

Sol: Because of the fringe field, the open cavity has an effective
length longer than L, hence the resonant frequency (of the £ >0
modes) 1s lower than that of an enclosed cavity of length L. It is
worth noting that for the £=0 (TM) modes of an enclosed cavity
for which the axial field profile 1s uniform, an opening at either
end will impose an axial mode structure and therefore increase
the resonant frequency.

5



Exercise 2
2. Use program CAVITY to show how the quality factor O of a
given mode varies with the output taper angle 6 of the open
cavity (keeping other parameters fixed). Interpret the results
qualitatively.

Sol: Larger 6 results in more reflection from the open end, and

hence lower diffraction loss and higher Q.
500

400;///,/“””””" \“4WE111

300

&
200}
*ﬁpErm
100E—"""
0,.»?*-*"] \_TE113
5 10 25 30

15 20
6 (degree)

-
- | { -
ST 2 ]



Exercise 3

3. For the cavity dimensions provided in Table I, the quality factors
of the first three modes (£ =1, 2, 3) are, respectively, 439, 116,
and 56 (see output data in Appendix A). Give two reasons to
explain the rapid drop of O with the axial mode number .

Sol: Higher £ number modes have higher resonant frequencies,
which result in (1) less reflection from the open end and (11)
higher group velocity of the wave. Both effects lead to greater
diffraction loss through the open end, and hence the decrease in
O values

Ji L g



Exercise 4
4. Use program CAVITY to show how the quality factor of a
given mode varies with the cavity length L (keeping other
parameters fixed). Give three reasons to explain the rapid
increase of O with L.

Sol: A shorter cavity stores less field energy, which further reduces
the O value. 2000

1500+
1000} TE

500r




Exercise 5

With reference to Fig. 1, assume that a traveling wave propagating to the left
1s totally reflected at z = z, and a traveling wave propagating to the right is
partially reflected at z = z; with a reflection coefficient. Show by the multiple
reflection approach (see R.E. Collin, II Foundations for Microwave
Engineering", 1st edition, pp. 340-343 and Eq. (49) in Ref. 10 of Appendix F)
that the diffraction Q is approximately given by

IT|Y? 4n (L ,

1—-|T] ¢ A

Q=

where A is the free space wavelength of the resonant mode. Compare this
relation with the scaling of O with respect to 8, [, and L as considered in
Exercises (2)-(4). Note that it depends on the taper angle and resonant
frequency (that is a function of 8 and L). If wall losses are included, show
that the combined diffractive/ Ohmic Q is given by the above equation with
I" replaced by I'exp(—2k,L), where 1is the attenuation constant which can be
evaluated from Eq. (10) of Appendix E.
(a) actual cavity (b) analytical model
T

2=0 z=L = B=L

L g



Exercise 6 and 7

Assume that the output waveguide section of the open cavity
(see Fig. 1, z > z,) 1s terminated 1n a slightly mismatched load.
Explain qualitatively how the load will affect the resonant

frequency and O of the cavity.

Use program CAVITY to verify
your answer to Exercise (6) by
adding a smooth bump on the
wall of the output waveguide to
simulate the effects of the

1000

800

600

t
Q()

400 ¥

200

0

----- 15 dB reflection
ooooo 20 dB reflection
----- 30 dB reflection
- - — no reflection

2 4 6 / a 10 12
. d/R
mismatched load.
1.009 :
(b) ----- 15 dB reflection
i coocoe 20 dB refleclion
F  wmassa 30 dB reflection
1.008 - — — no reflection
o
5
= 1.007
Fig. 9. )\n iris is added to the output waveguide to model the
effects of a mismatched external circuit. ' 1 1 : .

1.006

-
27 1y
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|
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Exercise &

8. The lack of a sharp boundary at the output end of the open
cavity 1s expected to result in a frequency sensitive field profile
for a resonant mode, as shown in Fig. 6 of Appendix F. How
would the frequency dependent field profile affect the spectral
shape of a resonant mode, measured at a fixed position in the
cavity, 1n response to a swept frequency source incident from
the output waveguide into the cavity?

il
2R .
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Exercise 9

9. In Exercise (8), if the fixed-position spectrum 1s measured at
different points along the length of the cavity, will the spectral
shape of a given mode be different from point to point? Does
this imply that probes located at different axial positions in the
cavity will measure different resonant frequencies and Qs for

the same mode?
1.0 '
0.8 ;
a
0.6 1
v &
- ?f speciral response
0.4 I g; at z=z,+L/2
j 34
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Exercise 10

10. Write a computer program based on the spectral domain formalism in Sec. II of
Appendix F to:

 verify your answers to Exercises (8) and (9)

* calculate the reflection coefficient assumed in Exercise (5) as a function of
the wave frequency.

* calculate the reflection coefficient at the smooth bump assumed in Exercise
(7) as a function of the wave frequency.

Sol: RFS or RFS2

33



Exercise 11

11. Program CAVITY calculates Q by its time domaln definition (denoted by superscript

“t,,) (t) _
¢ 2|w |

While the spectral domain formalism yields Q by its spectral domain definition (denoted by

superscript “w”) 0 (w) —
Aw

where A w 1s the FWHM bandwidth. Compare numerical runs made with program CAVITY

with those made with the program developed in Exercise (10) to show that, for the same

mode of a low Q open cavity, the two definitions of QO do not yield the same result and

Q®) > Q@)

Explain this result qualitatively.

—iwjt—i=t
j ZQ]@

FxD =) fie
J

_L ” lwt _i .
Fovw) = == | fo et = mme)

. Wj
a)—a)j+12Q.(t)
J
o == [0 —— =Y [ ———
ZQ. 20
J J )

= Q) > Q)
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Appendix: Muller’s Method

PROGRAM TEST 1<—-To solve for the roots of f(Jc)=Jc2 +1=0
IMPLICIT REAL (A, B, D-H, J-Z), COMPLEX (C)

DIMENSION CROOT (2)

COMMON ICONT

EXTERNAL CF

EP1=1.0E-6

EP2=EP1

IMAXIT=50

ICONT=0 <—for monitoring the number of times function CF is called by MULLER
CROOT (1) = CMPLX(0.5, 0'5)\ guessed values for roots

CROOT (2) = CMPLX(0.5, 0.5) /
no. of roots known values of roots (user supplies guessed values, MULLER returns correct values)

T T accuracy desired FALSE.->search for complex roots
CALL MULLER (0, 2, CROOT, IMAXIT, EP1, EP2, CTF, FALSE.) .TRUE.—>search for real roots
T

no. of roots wanted  max. no. of iterations complex functions f(x)

VALUE1=CABS(CF(CROOT(1)))

VALUE2=CABS(CF(CROOT(2)))

WRITE(6,1) CROOT(1), VALUE1 , CROOT(2) , VALUE2, ICONT
1 FORMAT( ROOT1=',1PE11.4,,",1PE114, (VALUE1=',1PE8.1, )’/
& ROOT2=,1PE11.4,,',1PE11.4, (VALUE2=',1PES.1,")' /

&' ICONT='4)

STOP

END

FUNCTION CF (CROOT)<—-function provided by user to evaluate f(x) when called by MULLER
IMPLICIT REAL (A, B, D-H, J-Z), COMPLEX (C)

COMMON ICONT . . .
CF=CROOT**2+1.0 Note: Muller’s method 1s discussed in Conte
ICONT=ICONT+1 .
RETURN and de boor, Falementary Numerical
END . T ..

Analysis”, (3 edition, Sec. 3.7).
Results returned by MULLER :  (cf: analytical solution x=+i)

ROOT1=8.3027E-12, 1.0000E+00 (VALUEl= 1.7E-11)
ROOT2=-1.9092E-10, -1.0000E+00 (VALUE2= 6.3E-10)
ICONT= 10 <—Total no. of times CF was called to find ROOTI and ROOT2




Appendix: Runge-Kutta’s Method (RKINT)

The test program solves for (dzldtz )y= -sin t for y(t), given y(0)=0, and (d/dt)y(0)=1.
First, we split (d2/dr2)y= -sin tinto 2 first order differential equations for
Yi()[=y(1)] and y,(t)[= (dIdt)y=y'], and let the independent variable t be y(t).

Thus, we have

(dldt)y; =y, ¥ (0)=0

(didt)y, =-sint z with intial conditions: 3 y2 (0)=1

(didt)ys = 1 ¥3(0)=0
PROGRAM TEST 2
IMPLICIT REAL (A,B, D-H, J-Z) Note: when using RKINT to solve a differential
DIMENSION Y (90), DY (90), Q(90) equation, always check the convergence of results
EXTERNAL DERIVY with respect to the step size (DELT)

PI=3.1415927

T0=0.0 «<—initial t

TF=Pl/2.0<—final t

Y(1)=0.0

Y(2)=1.0 initial values of y;,y, & y3
Y(3)=TO

ITMAX=40<-—no of integration steps between t=0 and t=7 /2.
DELT=(TF-T0)/DFLOAT (ITMAX)<—step size for t- integration (A t)

.DO101I=1,3
10 Q(I)=0.0<«—accuracy indicator (initial values set at 0).
user supplies y(), yo(t),.....RKINT returns y; (t+4t), y, (t+41),....
DO 100IT=1,ITMAX T >values of y’ returned by RKINT
100 CALL RKINT (DERIVY, Y, DY, Q, 1, 3, DELT)

T |—|—>ﬁrst and last equations to be integrated
subroutine provided by user to evaluate y';, y',....etc. when called by RKINT.
PRINT 1, Y(3), Y(1), Y(2)
1 FORMAT (' T=', 1PE13.6,', Y(1)=',1PE13.6,', Y(2)='1PE13.6)
STOP
END yr gy/dt last equation to be integrated
SUBROUTINE DERIVY" (Y, DY, I[EQFST, IEQLST)
IMPLICIT REAL (A, B,D-H,J-Z)  Tfirst equation to be integrated
DIMENSION Y(1), DY(1)
DY(1)=Y(2)
DY(2)=-SIN (Y(3))
DY(3)=1.0
RETURN
END

Results returned by RKINT at t=m /2: cf. analytical solutions
T=1.570797E+00, Y (1)=9.999997E-01, Y(2)=-3.269079E-07 yi(t)=y(t)=sin
Ya(t)=y'(t)=cos t
att=m/2




Part I Spectral-Domain Analysis of Open Cavities

Reason: Cold tests of open cavities almost always employ the
method of frequency sweeping, and Q 1s measured by its spectral
domain definition (hence denoted by superscript @), where Aw 1s
the full width between the half maxima of the resonant line.

Quality factor of the cavity:

Time—domain definition:
field energy  w;

(1) — -
¢ O powerloss  2|w;]

Frequency—domain definition:

W
(w) — 0 \
Q Aw <
What is the difference between

these two definitions?
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Il. Numerical Approaches for the Spectral Model

3 assumptions:

* The waveguide radius changes slowly and there 1s no mode
conversion.

* A resonant mode i1s 1nitially present in the cavity. All fields vary
with time as exp(-iw?).

* The end sections are uniform to ensure the correctness of

calculation.
______ . &, Time-domain model:
- _-.‘F‘I ----------------- Z NN .
..... L2z TEng mode %3 %4 %7 G 00ing W = Wy + lw; (Where w; < 0.)

S~ TE,., wave

P Frequency-domain model:
TBpn wave o _‘: ‘R_z ______ IR _____ Lr 7, *z ?

1reflected — AV

T W Complex reflection coefficient

S .‘
) &=
r e 59
o Al S




Numerical Model
® With a proper guess of the value of I (I'=1,+i I')).

f(zy) = etkz(20)71 4 Te~thz(z1)2n

f'(z,) = ik, (e*z(71)71 — Tg~tkz(21)71) where @, > wemn

® / isgivenatz =z, and /' 1s set accordingly.
® Integrate from z; to z; using Runge-Kutta method

® Check the boundary condition at z; and use Muller’s method to
guess the next root of I

® [terative integration, each time with an improved guess for I,
will eventually converge to a correct solution for I', and f(z) will
satisfy all the boundary conditions.



Freqguency Response

.0
Table I. Normalized cavity dimensions used for numerical
cxamples (cf. Fig. 1) 0.8 | l=1
: .
L/R R.l/R. 11,2/l(. 0
13 0.56 1.22 10° 0.6 |-
Ny
5
0.4 |
0.2 |
0.0 1 1 1 1 1 1 i 1 1 1 1 1

0.98 1.00 1.02 (.04 1.06 1.08 1.10 [1.12

/6,

Iig. 3. Caculated maximum—T{ield spectrum of the 'l‘E“Q modes in

response to a TE;; wave of constant amplitude incident
[rom the output waveguide (see Fig. 2). |[] is the spatial
maximum of the field amplitude at a given frequency.
|fmax| and |[nin| are, respectively, the spectral maxinum
and minimum of a given mode. w; is the angular cutoff Y-
[requency of the main body of the cavity %radius R). f’ﬁ 41
Cavity parameters of Table I were used. BTV
@ ﬂ'{ﬂ;‘—w [ D



Numerical Results

Numerical results obtained under the temporal and spectral
models for the cavity dimensions in Table I with different output

taper angles 6 . TE,; were calculated. £, 1s the cutoff frequency of
the main body of the cavity.

19 #) QD QW | fminl?

0 [ - (1) (w)
fc fc Q Q Qre! Qre[ . |fm¢x|2
40 1 1.0069 1.0069 311.80 298.86 1.6869 1.6166 0.117
49 2 1.0275 1.0278 78.66 62.56 0.8173 0.6496 0.372
40 3 1.0622 1.0629 36.20 ——— 0.5280 —— 0.604
™ 1 1.0071 1.0072 402.24 390.31 2.1750 2._1102 0.071
i 2 .1.0'283 1.0286 104.28 92.66 1.0817 0.9607 0.248
70 3 1.0627 1.0634 48.96 33.91 0.7132 0.4935 . 0.461
™ 4 1.1093 1.1108 2938 —— 0.5239 —— 0.648
10° 1 1.0074 1.0074 438.8¢ 430.44 2.3718 2.3262 ' 0.057
10° 2 1.0292 1.0293 115.36 106.08 1.1947 1.0983 0.201
10° K} 1.0646 1.0650 595.44 4449 0.8048 0.6454 0.378
4

1.1124  1.1130 3441 —— 0.6102 —— 0.543




Example I Frequency Tunable Terahertz Gyrotron 394 GHz
Using Open Cavity Structure

Novel mechanism: Reflected gyrotron backward-wave oscillator

- Frequency tunability:

~ ~ [LL,=0.5 =15 L,-0.4 _ _
S 03 e T ____ Sl Linear and nonlinear field profiles
5 [ | e
=~ s 02372 60", = F =1
2o02F 120 A
S| 2.0 8
2 Jis & % -2
SoF jof 5t
= [ Jos 5 OF =3
- | E - - - lirear
0 04 08 12 16 2 24 :
z (cm) = b =4
"g - Nonlinear field
k E contraction for the
TEqs mode 2 F i=3 bhacloward-wave modes.
—— 11, i=394.678 GHz, 0;=11385.7 S A
— — — [=2, £,=394.994 GHz, 0,=4588.8 0 05 1 15 2 25 3
2 e

— = [=3, /4=395.521 GHz, 03=2310.7

T. H. Chang*, T. Idehara, 1. Ogawa, L. Agusu, C. C. Chiu, and S. Kobayashi, “Frequency tunable gyrotron using
backward-wave components”, J. Appl. Phys. 105, 063304 (2009). Citation: 179 if -
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Example I Frequency Tunable Terahertz Gyrotron 203 GHz
With Mode Selectivity

An on-going research with
Japan Fukui Univ.

N. C. Chen, T. H. Chang*, C. P. Yuan, T. Idehara
and 1. Ogawa, “Theoretical investigation of a high
efficiency and broadband sub-terahertz gyrotron",
Appl. Phys. Lett. 96, 161501 (2010). Citation: 49
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