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I. Introduction
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• Open cavities are employed in gyrotrons for the generation and 

extraction of high-power millimeter/terahertz radiation.

• The resonant characteristics depend on the structure. This is a 

low-Q resonant circuit due to the open-end structure.

• The materials are self-contained and self-explanatory.

• A complementary spectral-domain model can be found in the 

Appendix.

Caption: Illustrative model of an open

cavity. Section z  z2 is a cutoff waveguide

(for electron beam entrance). The section

between z2 and z3 comprises the main body

of the cavity. The section between z3 and z4

is slightly tapered to provide partial

reflection back to the cavity and partial

transmission into the output waveguide (z 

z4).



II. Formulation
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3 assumptions:

• The waveguide radius changes slowly, and there is no mode 

conversion. 

• A resonant mode is initially present in the cavity. All fields vary 

with time as exp(− iωt). 

• The end sections are uniform to ensure the correctness of the 

calculation.

Consider a typical open cavity

formed of multiple sections of

uniform and linearly tapered

structures. Find the resonant

frequency r and the Q-factor.

𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖 (where 𝜔𝑖 < 0.)



Time-Domain Analysis
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The time dependence of a field component (say 𝐵z) is 
𝐵z~𝑒−𝑖𝜔𝑡 = 𝑒𝜔𝑖𝑡𝑒−𝑖𝜔𝑟𝑡

Field energy ~ 𝐵𝑧
2~𝑒2𝜔𝑖𝑡, (𝜔𝑖<0)

Power loss ~
𝑑

𝑑𝑡
(field energy) = 2 𝜔𝑖 ⋅ (field energy)

Quality factor of the cavity:

 𝑄 =
𝜔𝑟 field energy

powerloss
=

𝜔𝑟

2 𝜔𝑖



Characteristics of TEmn mode
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For a circular waveguide with slowly varying radius rw(z), the wave

equation of TE mode is expressed in a cylindrical coordinate system as,

𝐵𝑧 = 𝑓(𝑧)𝐽𝑚 𝑘𝑚𝑛(𝑧)𝑟 𝑒𝑖𝑚𝜃−𝑖𝜔𝑡

Applying the boundary condition on the side wall,

𝜕

𝜕𝑟
𝐵𝑧|𝑟=𝑟𝑤(𝑧) = 0 ⇒  𝑘𝑚𝑛(𝑧) =

𝑥𝑚𝑛

𝑟𝑤(𝑧)
, 

where 𝑥𝑚𝑛 is the 𝑛−th root of 𝐽𝑚
′ (𝑥) = 0

Substituting to the wave equation, we obtain

𝑑2

𝑑𝑧2 + 𝑘𝑧
2(𝑧) 𝑓(𝑧) = 0, where

𝑘𝑧
2(𝑧) =

𝜔2

𝑐2 −
𝑥𝑚𝑛

2

𝑟𝑤
2(𝑧)

above cutoff

𝜅𝑧
2(𝑧) =

𝑥𝑚𝑛
2

𝑟𝑤
2(𝑧)

−
𝜔2

𝑐2 below cutoff



Field Profile
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The complex function of f(z) takes the general form,

The dependences of  f(z) and Φ(z) on z indicate the nature of the wave. 

• For a pure traveling wave (A = 0 or B = 0), |f(z)| is independent of z, 

but Φ(z) is a linear function of z. 

• For a pure standing wave (A = ± B),  |f(z)| is a sinusoidal function of z.

• For decaying waves at both ends, Φ(z) is independent of z. 

Use the boundary conditions to determine |f(z)| and Φ(z).

𝑓(𝑧) = 𝑓(𝑧) 𝑒𝑖Φ(𝑧)

𝑓(𝑧) = ൝
𝐴𝑒𝑖𝑘𝑧𝑧 + 𝐵𝑒−𝑖𝑘𝑧𝑧, if 𝜔𝑟 > 𝜔𝑐𝑚𝑛

𝐶𝑒𝜅𝑧𝑧 + 𝐷𝑒−𝜅𝑧𝑧, if 𝜔𝑟 < 𝜔𝑐𝑚𝑛

,  where 𝜔𝑐𝑚𝑛 =
𝑥𝑚𝑛𝑐

𝑟𝑤



Boundary Conditions
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Out-going wave boundary conditions: Initially there is a field 

profile satisfying all the boundary conditions and then decaying 

with time. 

At both ends, A = D = 0 at z = z1 and C = B = 0 at z5. 

𝑓′(𝑧1) = ൝
−𝑖𝑘𝑧(𝑧1)𝑓(𝑧1), if 𝜔𝑟 > 𝜔𝑐𝑚𝑛(𝑧1)

𝜅𝑧(𝑧1)𝑓(𝑧1), if 𝜔𝑟 < 𝜔𝑐𝑚𝑛(𝑧1)

𝑓′(𝑧5) = ൝
𝑖𝑘𝑧(𝑧5)𝑓(𝑧5), if 𝜔𝑟 > 𝜔𝑐𝑚𝑛(𝑧5)

−𝜅𝑧(𝑧5)𝑓(𝑧5), if 𝜔𝑟 < 𝜔𝑐𝑚𝑛(𝑧5)



Numerical Procedure
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⚫ With a proper guess of the value of ωr and Q (ω = ωr +iωi).

⚫ f is given at z = z1 and f ′ is set accordingly.

⚫ Integrate from z1 to z5 using Runge Kutta method

⚫ Check the boundary condition at z5 and using Muller’s method 

to guess the next root of ωr and Q.

⚫ Iterative integration, each time with an improved guess for ω, 

will eventually converge to a correct solution for ω, and f(z) 

will satisfy all the boundary conditions. 



Complex Boundary Condition (cbc sub-rountine)
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The boundary condition at z = z1 is given. However, the boundary 

condition at z = z5 needs to be checked. 

𝑓′(𝑧5) = ൝
𝑖𝑘𝑧(𝑧5)𝑓(𝑧5), if 𝜔𝑟 > 𝜔𝑐𝑚𝑛(𝑧5)

−𝜅𝑧(𝑧5)𝑓(𝑧5), if 𝜔𝑟 < 𝜔𝑐𝑚𝑛(𝑧5)

or 𝐷(𝜔) = ൝
𝑓′(𝑧5) − 𝑖𝑘𝑧(𝑧5)𝑓(𝑧5), if 𝜔𝑟 > 𝜔𝑐𝑚𝑛(𝑧5)

𝑓′(𝑧5) + 𝜅𝑧(𝑧5)𝑓(𝑧5), if 𝜔𝑟 < 𝜔𝑐𝑚𝑛(𝑧5)

Standard root-finding algorithms such as Muller’s method can be 

readily used.

There are a series of discrete solutions for ω corresponding to 

different axial modes (assuming that the transverse mode number 

m and n are given).



Comments
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⚫ It is clear that the solution for  should be independent of the

positions of z1 and z5 as long as they are in the uniform end

sections.

⚫ Validity of the evanescent wave boundary condition requires

that the end waveguide radius (Rl or R2) be smaller than the

cavity radius (R).

⚫ It should also be noted that the assumption of slowly varying

cross-section is violated at z = z2 (Fig.1). This is justifiable only

if the left end waveguide (z  z2) is cutoff to the cavity mode. In

this case, total reflection at the left end occurs as a more exact

model would predict.



III. Numerical Algorithm
How to integrate a differential equation?
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The Runge-Kutta method: 

The second order equation shown above can be decomposed into 

the form of coupled real differential equations of the first order.

𝑑2

𝑑𝑧2
+ 𝑘𝑧

2(𝑧) 𝑓(𝑧) = 0, where

𝑘𝑧
2(𝑧) =

𝜔2

𝑐2
−

𝑥𝑚𝑛
2

𝑟𝑤
2(𝑧)

above cutoff

𝜅𝑧
2(𝑧) =

𝑥𝑚𝑛
2

𝑟𝑤
2(𝑧)

−
𝜔2

𝑐2
below cutoff

𝑓 = 𝑓𝑟 + 𝑖𝑓𝑖

𝑓′ = 𝑓𝑟
′ + 𝑖𝑓𝑖

′

𝑘𝑧 = 𝑘𝑧𝑟 + 𝑖𝑘𝑧𝑖

𝑘𝑧
2 = Re( 𝑘𝑧

2) + 𝑖 Im( 𝑘𝑧
2)

 ⇒

𝑑

𝑑𝑧
𝑓𝑟 = 𝑓𝑟

′

𝑑

𝑑𝑧
𝑓𝑖 = 𝑓𝑖

′

𝑑

𝑑𝑧
𝑓𝑟

′ = − Re( 𝑘𝑧
2)𝑓𝑟 + Im( 𝑘𝑧

2)𝑓𝑖

𝑑

𝑑𝑧
𝑓𝑖

′ = − Im( 𝑘𝑧
2)𝑓𝑟 − Re( 𝑘𝑧

2)𝑓𝑖



III. Numerical Algorithm
Initial Boundary conditions at z1
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The boundary conditions at z = z1 can be written,

ቊ
𝑓𝑟(𝑧1) = arbitrary real constant
𝑓𝑖(𝑧1) = arbitrary real constant

𝑓𝑟
′(𝑧1) = ൝

𝑘𝑧𝑟(𝑧1)𝑓𝑖(𝑧1) + 𝑘𝑧𝑖(𝑧1)𝑓𝑟(𝑧1), if 𝜔𝑟 > 𝜔𝑐𝑚𝑛(𝑧1)

𝜅𝑧𝑟(𝑧1)𝑓𝑟(𝑧1) − 𝜅𝑧𝑖(𝑧1)𝑓𝑖(𝑧1), if 𝜔𝑟 < 𝜔𝑐𝑚𝑛(𝑧1)

𝑓𝑖
′(𝑧1) = ൝

−𝑘𝑧𝑟𝑓𝑟(𝑧1) + 𝑘𝑧𝑖𝑓𝑖(𝑧1), if 𝜔𝑟 > 𝜔𝑐𝑚𝑛(𝑧1)

𝜅𝑧𝑖𝑓𝑟(𝑧1) + 𝜅𝑧𝑟𝑓𝑖(𝑧1), if 𝜔𝑟 < 𝜔𝑐𝑚𝑛(𝑧1)



III. Numerical Algorithm
Final Boundary Conditions at z5
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⚫ A guessed value for ω can now be integrated from zl to z5. 

⚫ The resulting functions fr(z5), fi(z5), fr'(z5) and fi'(z5) give f(z5) 

and f '(z5).

⚫ The procedure is to be repeated with an improved guess of 

until the required accuracy is achieved. 



IV. A Fortran Exercise
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The program (named CAVITY.f) consists of a main program and the following 

subprograms. 

1. General purpose subprograms. 

MULLER: finding the complex roots of an arbitrary complex function (see 

Appendix B). 

RKINT: performing integration of simultaneous differential equations of the first 

order by the Runge-Kutta method (see Appendix C). 

SSCALE and SPLOT (or BSCALE and BPLOT): plotting data conveniently in 

characters (see Appendix D). 

2. Subprograms written for CAVITY (It is recommended to go over the contents closely). 

CBC: evaluating the function D(ω) in Eq. (19) by integrating Eqs. (24)-(27) with 

initial values given by Eqs. (28)-(31). 

DIFEQ: evaluating the derivatives in Eqs. (24)-(27). 

RADIUS: specifying the cavity wall radius as a function of z. 

RHO: specifying the wall resistivity as a function of z. 

CLOSS: evaluating the wall loss factor derived in Appendix E (The loss factor has 

been incorporated into the formalism in Appendix F.)



Procedures for Running Program Cavity.f
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⚫ To begin with, the cavity dimensions RADIUS, mode of interest, 

and numerical instructions, etc. are specified in the main program. 

⚫ A guessed value of ω is then input into MULLER which calls 

CBC to evaluate D(ω). Subprogram CBC calls RKINT to perform 

the integration from zl to z5. Subsequently, RKINT calls DIFEQ to 

evaluate the derivatives at every z-step of the integration. 

⚫ Finally, MULLER returns the solution for ω to the main program 

which prints all the information of interest and calls SSCALE and 

SPOLT (or BSCALE and BPLOT) to plot |f(z)| and (z).

⚫ Common blocks are extensively employed for information sharing 

(e.g., the cavity dimensions specified in the main program and the 

field profile calculated in subprogram CBC) between the main 

program and subprograms.



Cavity Dimensions and Calculated Results 
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Cavity dimensions used for numerical example

TE111 mode field profile |f| and phase angle Φ as functions of z for 

the cavity shown above. 

𝑓𝑐11 =
1.841

0.9

30

2𝜋
= 9.7668 GHz

𝑓111 = 9.96 GHz



Wall Resistivity and Loss Factor
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⚫ Ohmic wall losses have been included in CAVITY through 

subprograms RHO and CLOSS. 

⚫ Formulation of wall loss can be found in Appendix E. 

⚫ As a first exercise, we can ignore this effect (hence RHO 

and CLOSS) by setting the wall resistivity to zero in the 

main program.

⚫ The TEmn mode dispersion relation for a vacuum filled 

waveguide,

𝜔2 − 𝑘𝑧
2𝑐2 − 𝜔𝑐𝑚𝑛

2 1 − (1 + 𝑖)
𝜇𝑐𝛿

𝑟𝑤
1 +

𝑚2

𝑥𝑚𝑛
2 − 𝑚2

𝜔2

𝜔𝑚𝑛
2 = 0



Check the Validity of the Results
(Convergence Test)
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(i) When calling MULLER to solve for the root of a function (e.g., CF in

Appendix B), always monitor the number of times (e.g., ICONT in

Appendix B) that the function has been evaluated. For a well-behaved

function, the number should be small (less than 10 per root). When the

number becomes too large or in the case MULLER is unable to find a

root, it is a warning signal of some numerical difficulty due to, for

example, erratic behavior of the function (discontinuities and sharp

spikes, etc.) or the presence of many closely spaced roots. The result

may be in question, or the physics may be unexpected. The warning

signal can not be ignored.

(ii) After MULLER returns a root, always ensure that the resulting function

value (e.g., VALUE1 and VALUE2 in Appendix B) is vanishingly small

relative to the largest terms of the function. For example, if the function

is composed of terms of the order of 1010, a function value of 102 may be

considered vanishingly small (beware of the number of significant digits

the computer is capable of handling).



Check the Validity of the Results II
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(iii) A valid root is not necessarily the desired root. For example, 

we provide a guessed value for the l = 2 root and call 

MULLER to search around it for the correct = 2 root. 

MULLER will return a different root (e.g., l = 1 or 3) if the 

guessed value happens to be a better guess for that root. A 

reliable way to verify the l number of the root returned by 

MULLER is to count the number of peaks in | f | versus z.

(iv) Even with all these checks, there is still no guarantee that the 

results are free from numerical errors. We must also check 

whether the step size in the z-integration is sufficiently fine to 

ensure convergence of results. 



Check the Validity of the Results III
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Figures below show a typical convergence test. The resonant frequency and quality factor Q

are plotted as functions of the total number of steps in the z-integration (named IZSTEP in

program CAVITY). Note that the positions of the junction points (z2, z3, and z4 in Fig. 1) and

hence the cavity dimensions, as resolved on the uniformly spaced axial grid points for the z-

integration, are subject to an uncertainty in the magnitude of the step size. This is the

primary reason for the fluctuations of and Q with respect to IZSTEP in the approach to

convergence. The slow convergence shown in Fig. 4 is predominantly due to the uncertainty

of resolving junction point z2 (where there is a discontinuity in wall radius) on the discrete

grid points. Generally speaking, the minimum IZSTEP required for good convergence

depends on the circuit geometry and the ratio of the total circuit length to the guide

wavelength. Too large an IZSTEP can also bring in accumulation of round-off errors.



Does the Numerical Results Make Sense?
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Even computed correctly, numerical results can not be trusted

unless they make sense physically. We may start by asking some

universal questions: Is the energy conserved (see the slightly

positive slope of in Fig. 3a)? Do the results reduce to well known

limits [see Exercises (1) below]? Do they exhibit reasonable

parametric dependence [see Exercises (2)-(4)]? Do they conform to

known scaling laws [see Exercise (5)]? Obtaining answers to these

questions is a sure way to become familiar with the problem. We

are now ready to go deeper into the problem [see Exercises (6)-(11)]

and, for the best reward of all, let our imagination take us to the

unexplored territories of research.

Always check carefully!



V. Discussion
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⚫ Computer programs based on the time domain formalism (such as program

CAVITY) are extremely effective in that they directly evaluate the resonant

frequency, Q, and field profile. They are essential tools for gyrotron designs.

Many runs can be rapidly made to achieve the desired resonant frequency and

Q, to optimize the field profile and maximize mode separation, etc. However,

because of its inability to scan the frequency, the time domain formalism does

not present a complete physical picture of the open cavity. The low Q nature

of the open cavity brings about some issues that can only be clarified with a

spectral domain analysis [see Exercises (8)-(11) and Appendix F].

⚫ Resonances of the type taking place in an open cavity are common in

microwave circuits which often contain slightly mismatched junctions

between various circuit elements. Single path reflection from one mismatched

junction results in a standing wave pattern (measured by VSWR). Multiple

reflections between two mismatched junctions result in resonances, much like

those of the open cavity. Thus, a circuit with multiple mismatched junctions

behaves like coupled open cavities. The resulting circuit resonances are seen

on an oscilloscope as multiple spikes superimposed on a swept frequency

signal.



Exercise 1
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1. For the open cavity of Fig. 1 with dimensions given in Table I, 

the resonant frequency of the TE111 mode is 9.839 GHz (see Fig. 

4). For an enclosed cylindrical cavity with the same radius (0.9 

cm) and length (11.7 cm) as those of the main body of the open 

cavity, the resonant frequency of the TE111 mode is 9.851 GHz. 

Explain the difference qualitatively. 

Sol: Because of the fringe field, the open cavity has an effective 

length longer than L, hence the resonant frequency (of the    >0 

modes) is lower than that of an enclosed cavity of length L. It is 

worth noting that for the   =0 (TM) modes of an enclosed cavity 

for which the axial field profile is uniform, an opening at either 

end will impose an axial mode structure and therefore increase 

the resonant frequency.

ℓ

ℓ



Exercise 2
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2. Use program CAVITY to show how the quality factor Q of a

given mode varies with the output taper angle θ of the open

cavity (keeping other parameters fixed). Interpret the results

qualitatively.

Sol: Larger θ results in more reflection from the open end, and 

hence lower diffraction loss and higher Q.



Exercise 3
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3. For the cavity dimensions provided in Table I, the quality factors

of the first three modes (    = 1, 2, 3) are, respectively, 439, 116,

and 56 (see output data in Appendix A). Give two reasons to

explain the rapid drop of Q with the axial mode number .

Sol: Higher number modes have higher resonant frequencies,

which result in (i) less reflection from the open end and (ii)

higher group velocity of the wave. Both effects lead to greater

diffraction loss through the open end, and hence the decrease in

Q values

ℓ

ℓ



Exercise 4
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4. Use program CAVITY to show how the quality factor of a

given mode varies with the cavity length L (keeping other

parameters fixed). Give three reasons to explain the rapid

increase of Q with L.

Sol: A shorter cavity stores less field energy, which further reduces

the Q value.



Exercise 5
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5. With reference to Fig. 1, assume that a traveling wave propagating to the left

is totally reflected at z = z2 and a traveling wave propagating to the right is

partially reflected at z = z3 with a reflection coefficient. Show by the multiple

reflection approach (see R.E. Collin, II Foundations for Microwave

Engineering", 1st edition, pp. 340-343 and Eq. (49) in Ref. 10 of Appendix F)

that the diffraction Q is approximately given by

where λ is the free space wavelength of the resonant mode. Compare this

relation with the scaling of Q with respect to θ, l, and L as considered in

Exercises (2)-(4). Note that it depends on the taper angle and resonant

frequency (that is a function of θ and L). If wall losses are included, show

that the combined diffractive/ Ohmic Q is given by the above equation with

 replaced by exp(－2kzL), where is the attenuation constant which can be

evaluated from Eq. (10) of Appendix E.

𝑄 ≈
Γ 1/2

1 − Γ

4𝜋

ℓ
(
𝐿

𝜆
)2



Exercise 6 and 7
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6. Assume that the output waveguide section of the open cavity

(see Fig. 1, z  z4) is terminated in a slightly mismatched load.

Explain qualitatively how the load will affect the resonant

frequency and Q of the cavity.

7. Use program CAVITY to verify

your answer to Exercise (6) by

adding a smooth bump on the

wall of the output waveguide to

simulate the effects of the

mismatched load.



Exercise 8
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8. The lack of a sharp boundary at the output end of the open

cavity is expected to result in a frequency sensitive field profile

for a resonant mode, as shown in Fig. 6 of Appendix F. How

would the frequency dependent field profile affect the spectral

shape of a resonant mode, measured at a fixed position in the

cavity, in response to a swept frequency source incident from

the output waveguide into the cavity?



Exercise 9

32

9. In Exercise (8), if the fixed-position spectrum is measured at 

different points along the length of the cavity, will the spectral 

shape of a given mode be different from point to point? Does 

this imply that probes located at different axial positions in the 

cavity will measure different resonant frequencies and Q’s for 

the same mode? 



Exercise 10
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10. Write a computer program based on the spectral domain formalism in Sec. II of 

Appendix F to: 

• verify your answers to Exercises (8) and (9) 

• calculate the reflection coefficient  assumed in Exercise (5) as a function of 

the wave frequency. 

• calculate the reflection coefficient at the smooth bump assumed in Exercise 

(7) as a function of the wave frequency. 

Sol: RFS or RFS2



Exercise 11
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11. Program CAVITY calculates Q by its time domain definition (denoted by superscript 

“t”)                     

While the spectral domain formalism yields Q by its spectral domain definition (denoted by 

superscript “ω”)

where Δ ω is the FWHM bandwidth. Compare numerical runs made with program CAVITY 

with those made with the program developed in Exercise (10) to show that, for the same 

mode of a low Q open cavity, the two definitions of Q do not yield the same result and                        

Explain this result qualitatively. 
𝑄(𝑡) > 𝑄(𝜔)

𝑄(𝜔) =
𝜔

Δ𝜔

𝑄(t) =
𝜔𝑟

2 𝜔𝑖

𝑓(𝐱, 𝑡) = ෍

𝑗

𝑓𝑗(𝐱) 𝑒
−𝑖𝜔𝑗𝑡−

𝜔𝑗

2𝑄
𝑗
(𝑡)𝑡

𝑓(𝐱, 𝜔) =
1

2𝜋
න

0

∞

𝑓(𝐱, 𝑡)𝑒𝑖𝜔𝑡𝑑𝑡 =
1

2𝜋
෍

𝑗

𝑓𝑗(𝐱)
𝑖

𝜔 − 𝜔𝑗 + 𝑖
𝜔𝑗

2𝑄𝑗
(𝑡)

𝑓(𝐱, 𝜔) 2 =
1

2𝜋
෍

𝑗

𝑓𝑗(𝐱)
𝑖

𝜔 − 𝜔𝑗 + 𝑖
𝜔𝑗

2𝑄𝑗
(𝑡)

1

2𝜋
෍

𝑗

𝑓𝑗
∗(𝐱)

−𝑖

𝜔 − 𝜔𝑗 − 𝑖
𝜔𝑗

2𝑄𝑗
(𝑡)

=. . .  ⇒  Q(𝑡) > 𝑄(𝜔)



Appendix: Muller’s Method
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Note: Muller’s method is discussed in Conte 

and de boor, Elementary Numerical 

Analysis”, (3
rd

edition, Sec. 3.7).



Appendix: Runge-Kutta’s Method (RKINT)
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Spectral-Domain Analysis of Open Cavities
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Reason: Cold tests of open cavities almost always employ the 

method of frequency sweeping, and Q is measured by its spectral 

domain definition (hence denoted by superscript ω), where Δω is 

the full width between the half maxima of the resonant line.

Part II

Quality factor of the cavity:
 Time−domain definition:

 𝑄(𝑡) = 𝜔𝑟

field energy

powerloss
=

𝜔𝑟

2 𝜔𝑖

 
      Frequency−domain definition:

 𝑄(𝜔) =
𝜔0

Δ𝜔
What is the difference between 

these two definitions?



II. Numerical Approaches for the Spectral Model
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3 assumptions:

• The waveguide radius changes slowly and there is no mode 

conversion. 

• A resonant mode is initially present in the cavity. All fields vary 

with time as exp(-iωt). 

• The end sections are uniform to ensure the correctness of 

calculation.

Time-domain model:

𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖 (where 𝜔𝑖 < 0.)

Frequency-domain model:

?

Complex reflection coefficient

Γ



Numerical Model
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⚫ f is given at z = z1 and f ′ is set accordingly.

⚫ Integrate from z1 to z5 using Runge-Kutta method

⚫ Check the boundary condition at z5 and use Muller’s method to 

guess the next root of Γ.

⚫ Iterative integration, each time with an improved guess for Γ, 

will eventually converge to a correct solution for Γ, and f(z) will 

satisfy all the boundary conditions. 

൝
𝑓 𝑧1 = 𝑒𝑖𝑘𝑧 𝑧1 𝑧1 + Γ𝑒−𝑖𝑘𝑧 𝑧1 𝑧1

𝑓′(𝑧1) = 𝑖𝑘𝑧(𝑒𝑖𝑘𝑧(𝑧1)𝑧1 − Γ𝑒−𝑖𝑘𝑧(𝑧1)𝑧1)
where 𝜔𝑟 > 𝜔𝑐𝑚𝑛

⚫ With a proper guess of the value of Γ (Γ = Γr +i Γi).



Frequency Response
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Numerical Results
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Numerical results obtained under the temporal and spectral

models for the cavity dimensions in Table I with different output

taper angles θ . TE11l were calculated. fc is the cutoff frequency of

the main body of the cavity.



Frequency Tunable Terahertz Gyrotron 394 GHz

Using Open Cavity Structure
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Novel mechanism: Reflected gyrotron backward-wave oscillator

Example I

T. H. Chang*, T. Idehara, I. Ogawa, L. Agusu, C. C. Chiu, and S. Kobayashi, “Frequency tunable gyrotron using 

backward-wave components”,  J. Appl. Phys. 105, 063304 (2009).  Citation: 179



Frequency Tunable Terahertz Gyrotron 203 GHz
With Mode Selectivity
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An on-going research with 

Japan Fukui Univ.

Example II

N. C. Chen, T. H. Chang*, C. P. Yuan, T. Idehara

and I. Ogawa, “Theoretical investigation of a high

efficiency and broadband sub-terahertz gyrotron",

Appl. Phys. Lett. 96, 161501 (2010). Citation: 49



The End of Open Cavity 
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